General Issues
Genre Classification
Artist Identification
Artist Similarity
Framework
Features

Results




 

ISMIR2004 Audio Description Contest - Genre / Artist ID Classification Results

Genre Classification Contest


Results are presented for each participant in the following format:

- The confusion matrix, ie: which tracks are correctly classified or not depending on the class. It is read as "<column> is classified as <row>", for instance, if classical is the first column (and row) and world is the last, the number in the first column, last row represent the number of classical tracks actually classified as world music. A perfect matrix only contains numbers in the diagonal.

- the average results (correctly identified tracks divided by total number of tracks)

- the results per class and the normalized result with respect to the probability of each class.

Participants


- Dan Ellis & Brian Whitman (Columbia University, MIT)

- Elias Pampalk (ÖFAI)

- George Tzanetakis (Univ. of Victoria)

- Kris West (Univ. of East Anglia)

- Thomas Lidy & Andreas Rauber (Vienna University of Technology)



Results


Dan Ellis & Brian Whitman

confusion matrix:

[[312  45  11   1  20  77]
 [  3  42   1   5  19  12]
 [  1   4  13   0   2   0]
 [  0   3   0  23   8   1]
 [  0  14   0  16  52   6]
 [  3   7   1   0   0  27]]

(columns: classical electronic jazz_blues metal_punk rock_pop world )
469 good identifications out of 729 queries
averaging 64 % correct answers

total songs per class: [319 115  26  45 101 123]
results per class: [ 0.97806  0.36522  0.5  0.51111  0.51485  0.21951 ]
result normalized with respect to the probability of each class: 51.48%


Elias Pampalk

confusion matrix:

[[312   1   2   0   3  18]
 [  1  84   1   2  10   8]
 [  0   0  21   0   0   1]
 [  0   2   0  34   5   0]
 [  2  20   1   9  78  12]
 [  4   8   1   0   5  84]]

(columns: classical electronic jazz_blues metal_punk rock_pop world )

613 good identifications out of 729 queries
averaging 84.07 % correct answers

total songs per class: [319 115  26  45 101 123]
results per class: [ 0.97806  0.73043  0.80769  0.75556  0.77228  0.68293 ]
result normalized with respect to the probability of each class: 78.78%

George Tzanetakis

confusion matrix:

[[301   7   8   1  11  60]
 [  0  73   0   2   7  10]
 [  0   0  13   0   0   1]
 [  0   0   0  16   6   2]
 [  3  16   2  23  74   7]
 [ 15  19   3   3   3  43]]

(columns: classical electronic jazz_blues metal_punk rock_pop world )

520 good identifications out of 729 queries
averaging 71.33 % correct answers

total songs per class: [319 115  26  45 101 123]
results per class: [ 0.94357  0.63478  0.5  0.35556  0.73267  0.34959 ]
result normalized with respect to the probability of each class: 58.60%

Kris West

confusion matrix:

[[316   3   5   1  10  51]
 [  1  98   1   6  13  16]
 [  0   0  16   0   0   1]
 [  0   1   0  22   5   0]
 [  1  10   3  16  67   4]
 [  1   3   1   0   6  52]]

(columns: classical electronic jazz_blues metal_punk rock_pop world )

571 good identifications out of 729 queries
averaging 78.33 % correct answers

total songs per class: [319 115  26  45 101 123]
results per class: [ 0.99059561  0.85217  0.61538  0.48889  0.66337  0.42276 ]
result normalized with respect to the probability of each class: 67.22%

Thomas Lidy & Andreas Rauber

confusion matrix:

[[311   4   2   0   7  52]
 [  0  80   2   9  12  18]
 [  0   4  11   0   1   2]
 [  0   1   2  19  19   1]
 [  0  12   4  13  44   2]
 [  8  14   5   4  18  48]]

(columns: classical electronic jazz_blues metal_punk rock_pop world )

513 good identifications out of 729 queries
averaging 70.37 % correct answers

total songs per class: [319 115  26  45 101 123]
results per class: [ 0.97492  0.69565  0.42308  0.42222  0.43564  0.39024 ]
result normalized with respect to the probability of each class: 55.70%

>> back to top




Artist Classification Contest


Due to technical limits, the original aim of running the submissions on 200 classes (artists) could not be achieved, so the submissions were run both on 30 and 40 classes. The confusion matrices making much less sense than in genre classification (due to the small number of instances per class), only the average results will be presented.

Participants


- Dan Ellis & Brian Whitman (Columbia University, MIT)

- Thomas Lidy & Andreas Rauber (Vienna University of Technology)


 

Results for 30 classes

Dan Ellis & Brian Whitman

31 good identifications out of 90 queries, averaging 34% good answers

Thomas Lidy & Andreas Rauber

26 good identifications out of 90 queries, averaging 28% good answers



Results for 40 classes

Dan Ellis & Brian Whitman

29 good identifications out of 120 queries, averaging 24% good answers

Thomas Lidy & Andreas Rauber

29 good identifications out of 120 queries, averaging 24% good answers


>> back to top


Any comments or questions should be sent to Nicolas Wack

 
Universitat Pompeu Fabra

Institut Universitari de l'Audiovisual